(Sirigu, Bianchi \& Benedetti, 1969). As shown in Figs. 1 and 2, the phosphine acts as a bridging ligand spanning the $R u(1)-R u(2)$ edge. $R u(2)$ has the same regiochemical relationship with respect to the bridging CO ligand $[\mathrm{C}(7) \mathrm{O}(7)]$ as the first phosphine substitution site adopted in $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{16}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right]$ (Brown, Evans \& Webster, 1981), and the substitution site on $\mathrm{Ru}(2)$ is twisted away from the bridging CO side of the molecule to allow coordination of the second P atom to what appears to be the second-preference substitution site [on $\mathrm{Ru}(1)$]. Indeed, in both phosphineand arene-substituted derivatives, e.g. $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14^{-}}\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\right]$ (Ansell \& Bradley, 1980) and $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{11^{-}}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]$ (Gomez-Sal, Johnson, Lewis, Raithby \& Wright, 1985), the non-carbonyl ligands avoid coordination to the Ru atoms involved in the μ-CO bridge. The P NMR data at 172 K , with two distinct ${ }^{31} \mathrm{P}$ environments, are consistent with this structure being maintained in solution.

The shortest $\mathrm{Ru}-\mathrm{Ru}$ distance is that bridged by the μ-CO group, whilst the longest $[\mathrm{Ru}(1)-\mathrm{Ru}(2)]$ is spanned by the $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ ligand. However, the spread of metal-metal bond lengths in this compound $(0.15 \AA)$ is less than that of $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}\right](0.20 \AA)$ and $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{16}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right] \quad(0.26 \AA)$, so there is little evidence for the phosphine destabilizing a metal-metal bond. The carbido site $[C(16)]$ is slightly displaced towards $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$, but
the mean $\mathrm{Ru}-\mathrm{C}$ (carbide) distance is very similar to that of the parent cluster.

We thank Dr M. B. Hursthouse for collecting the data on the SERC/QMC diffractometer, and the SERC for support (BPG and AGJ).

References

Ansell, G. B. \& Bradley, J. S. (1980). Acta Cryst. B36, 1930-1932.
Brown, S. C., Evans, J. \& Webster, M. (1981). J. Chem. Soc. Dalton Trans. pp. 2263-2270.
Gomez-Sal, M. P., Johnson, B. F. G., Lewis, J., Raithby, P. R. \& Wright, A. H. (1985). J. Chem. Soc. Chem. Commun. pp. 1682-1684.
International Tables for X-ray Crystallography (1974). Vol IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USÁ.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univs. of Cambridge, England, and Göttingen, Federal Republic of Germany.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sirigu, A., Bianchi, M. \& Benedetti, E. (1969) J. Chem. Soc. Chem. Commun. p. 596.

Structure of Tris $\left(\eta^{5}\right.$-cyclopentadienyl) ytterbium(III)*

By Stefan H. Eggers, Jürgen Kopf and R. Dieter Fischer
Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, Federal Republic of Germany

(Received 12 May 1987; accepted 17 July 1987)

Abstract. $\left[\mathrm{Yb}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right], M_{r}=368.32$, orthorhombic, $P 22_{1} 1_{1}$, $\quad a=7.988$ (3), $\quad b=8.312$ (3), $\quad c=$ 18.176 (6) $\AA, \quad V=1206.8$ (7) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $2.027 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.709261 \AA, \quad \mu=$ $76.97 \mathrm{~cm}^{-1}, F(000)=700, T=295 \mathrm{~K}, R=0.037$ for 2244 unique observed reflections. The structure consists of Yb -centred, strictly mononuclear ($\eta^{5}-\mathrm{C}_{5}{ }^{-}$ $\left.\mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{\text {III }}$ units and is not identical with the structures of the corresponding Tm and Lu complexes. The average $\mathrm{Yb}-\mathrm{C}$ distance is $2.639 \AA$, and the Yb atom lies only

[^0]0108-2701/87/122288-03\$01.50
$0.05 \AA$ above the plane spanned by the centres of the three C_{5} pentagons.

Introduction. In contrast to the series of strictly isomorphic tetrahydrofuran (THF) adducts ($\eta^{5}-\mathrm{C}_{5}{ }^{-}$ $\left.\mathrm{H}_{5}\right)_{3} M^{\mathrm{III}} \cdot \mathrm{THF}$, with $M=$ lanthanoid ($\mathrm{La}-\mathrm{Lu}$) and Y (Ni, Deng \& Qian, 1985) or U (Wasserman, Zozulin, Moody, Ryan \& Salazar, 1983), the parent base-free tris(cyclopentadienyl)lanthanoid(III) complexes, ($\mathrm{C}_{5}{ }^{-}$ $\left.\mathrm{H}_{5}\right)_{3} \mathrm{Ln}^{\text {III }}$, display substantial structural variations with Ln (Eggers, Hinrichs, Kopf, Jahn \& Fischer, 1986, and references therein). In view of the unexpectedly drastic structural changes experienced on going from (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Tm}^{\mathrm{II} 1}$ to $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mu-\eta^{1}: \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Lu}^{1 \mathrm{III}}\right]_{\infty}$ (c) 1987 International Union of Crystallography
(Eggers, Schultze, Kopf \& Fischer, 1986) we report here the structure of the 'missing link', $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{\mathrm{II}}$ (atomic numbers of Tm, Yb and $\mathrm{Lu}=69,70$ and 71 , respectively).

Experimental. After numerous unsatisfactory attempts to arrive at suitable crystals by sublimation, dark-green single crystals of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{111}$ (Birmingham \& Wilkinson, 1956) were obtained from a saturated toluene solution after slow addition of n-hexane (room temperature, three days).
Crystals were sealed under N_{2} inside Lindemann capillaries because of their sensitivity towards air and moisture; density not measured; crystal size: $0.11 \times$ $0.10 \times 0.12 \mathrm{~mm}$, with six faces; Syntex $P 2_{1}$ automatic diffractometer, graphite monochromator; $\theta / 2 \theta$ scan mode; cell dimensions from 12 reflections, $10<2 \theta<$ 27°; numeric absorption correction with program SHELX76 (Sheldrick, 1976), transmission factors: 0.4318 (min.), 0.5281 (max.); max. $(\sin \theta) / \lambda$ $0.75755 \AA^{-1}$, hkl range: $0 \rightarrow 12,0 \rightarrow 12,0 \rightarrow 27$ (Friedel pairs collected), three standard reflections (200, 020, 004) displaying no significant variation in intensity from average during measurement, 2θ range: $4.5<2 \theta<$ $65^{\circ}, 5250$ data, 2515 unique [including 271, $F_{o}<$ $\left.3 \sigma\left(F_{o}\right)\right], R_{\text {int }}=0.023$; structure solved by Patterson (program SHELXS84, Sheldrick, 1984) and Fourier (program SHELX76) methods, refined on $F, 136$ parameters. $R=0.037$ for 2244 reflections for which $F_{o}>3 \sigma\left(F_{o}\right), w R=0.041$, the weighting scheme was based on unit weights, max. $4 /$ e.s.d.: $0 \cdot 4$, correction for extinction not applied; max. and min. residuals in the final Fourier map 0.7 and $-1.3 \mathrm{e} \AA^{-3}$; scattering factors for all atoms were taken from program system SHELX.

One of the cyclopentadienyl rings (ring 3) was refined as a rigid group with $\mathrm{C}-\mathrm{C}$ distance of $1.42 \AA$. The H atoms were placed at calculated positions $0.96 \AA$ from the bonded C atom with a common isotropic temperature factor of $0.05 \AA^{2}$.

In an attempt to determine the absolute structure, and in order to avoid systematic errors caused by anomalous-dispersion effects (Flack, 1983), the last two cycles of refinement were repeated with the unaveraged data, using both the original atomic positions and the enantiomorphic ones which were obtained by converting the signs of all coordinates into their opposites. The R values were $R=0.041$ ($w R=0.046$) for the original parameter set, and $R=0.037(w R=0.041)$ for the enantiomorphic parameter set. Most of the e.s.d.'s were slightly lower for the enantiomorphic structure.

The data were merged and both calculations were performed again. The values of several bond lengths and angles were better for the enantiomorphic parameter set. Since the max. and min. residuals in the final Fourier map were lower $\left(0.7 /-1.3\right.$ vs $0.8 /-1.6$ e \AA^{-3}),

Table 1. Atomic coordinates and temperature factors $U_{e q}$ with e.s.d.'s for the compound $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{I \prime 1}$

$U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Yb	$0.1741(1)$	$-0.4302(1)$	$-0.1245(1)$	$0.032(1)$
$\mathrm{C}(11)$	$-0.1161(13)$	$-0.2848(16)$	$-0.1244(9)$	$0.059(11)$
$\mathrm{C}(12)$	$-0.1478(14)$	$-0.4388(17)$	$-0.0941(7)$	$0.058(12)$
$\mathrm{C}(13)$	$-0.0748(15)$	$-0.4446(15)$	$-0.0253(7)$	$0.052(11)$
$\mathrm{C}(14)$	$0.0090(16)$	$-0.2994(15)$	$-0.0140(6)$	$0.052(11)$
$\mathrm{C}(15)$	$-0.0170(18)$	$-0.1999(15)$	$-0.0765(6)$	$0.055(11)$
$\mathrm{C}(21)$	$0.3287(21)$	$-0.1811(14)$	$-0.1827(7)$	$0.062(13)$
$\mathrm{C}(22)$	$0.1830(18)$	$-0.1866(13)$	$-0.2234(6)$	$0.051(10)$
$\mathrm{C}(23)$	$0.1838(16)$	$-0.3292(14)$	$-0.2645(6)$	$0.050(10)$
$\mathrm{C}(24)$	$0.3332(17)$	$-0.4104(14)$	$-0.2496(6)$	$0.052(10)$
$\mathrm{C}(25)$	$0.4262(16)$	$-0.3195(16)$	$-0.1975(7)$	$0.053(11)$
$\mathrm{C}(31)$	$0.4032(8)$	$-0.6671(9)$	$-0.1337(4)$	$0.043(9)$
$\mathrm{C}(32)$	$0.4054(8)$	$-0.6078(9)$	$-0.0604(4)$	$0.042(9)$
$\mathrm{C}(33)$	$0.2491(8)$	$-0.6455(9)$	$-0.0274(4)$	$0.047(10)$
$\mathrm{C}(34)$	$0.1504(8)$	$-0.7281(9)$	$-0.0803(4)$	$0.051(11)$
$\mathrm{C}(35)$	$0.2456(8)$	$-0.7415(9)$	$-0.1460(4)$	$0.044(9)$

Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$

Cent. = centre of each $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand.			
$\mathrm{Yb}-\mathrm{C}(11)$	$2.615(10)$	$\mathrm{Yb}-\mathrm{C}(31)$	$2.693(7)$
$\mathrm{Yb}-\mathrm{C}(12)$	$2.631(10)$	$\mathrm{Yb}-\mathrm{C}(32)$	$2.636(7)$
$\mathrm{Yb}-\mathrm{C}(13)$	$2.687(12)$	$\mathrm{Yb}-\mathrm{C}(33)$	$2.583(7)$
$\mathrm{Yb}-\mathrm{C}(14)$	$2.638(12)$	$\mathrm{Yb}-\mathrm{C}(34)$	$2.610(7)$
$\mathrm{Yb}-\mathrm{C}(15)$	$2.600(13)$	$\mathrm{Yb}-\mathrm{C}(35)$	$2.678(7)$
$\mathrm{Yb}-\mathrm{C}(21)$	$2.633(13)$	$\mathrm{Yb}-$ cent. 1	$2.351(12)$
$\mathrm{Yb}-\mathrm{C}(22)$	$2.709(11)$	$\mathrm{Yb}-$ cent. 2	$2.359(12)$
$\mathrm{Yb}-\mathrm{C}(23)$	$2.682(11)$	$\mathrm{Yb}-$ cent. 3	$2.348(7)$
$\mathrm{Yb}-\mathrm{C}(24)$	$2.610(12)$	$\mathrm{Yb} \cdots \mathrm{Yb}^{\prime}$	6.739
$\mathrm{Yb}-\mathrm{C}(25)$	$2.581(12)$	$\mathrm{Yb} \cdots \mathrm{Yb}^{\prime \prime}$	7.988
$\mathrm{Cp}-\mathrm{Yb}-\mathrm{Cp}_{2}$	119.5	$\mathrm{Yb}-\mathrm{Yb}^{\prime}-\mathrm{Yb}^{\prime \prime}$	72.7
$\mathrm{C} p_{1}-\mathrm{Yb}-\mathrm{Cp}_{3}$	120.5	$\mathrm{Yb}-\mathrm{Cp}_{1}-\mathrm{Yb}^{\prime}$	150.5
$\mathrm{Cp} p_{2}-\mathrm{Yb}-\mathrm{Cp}_{3}$	119.8	$\mathrm{Yb}-\mathrm{C}(14)^{\prime}-\mathrm{Yb}^{\prime}$	167.5

and the R values were slightly better ($R=0.0367$, $w R=0.0412$ vs $R=0.0371, \quad w R=0.0415)$, we decided to take these atomic positions, and all bond lengths and angles given here refer to them.

Discussion. Atomic parameters are listed in Table 1,* selected bond distances and angles in Table 2.

Unlike its polymeric Lu congener, $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mu\right.$ $\left.\left.\eta^{1}: \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Lu}^{\mathrm{II}}\right]_{\infty}$, and in spite of the very similar ionic radii of $\mathrm{Lu}^{1 \mathrm{II}}$ and Yb^{111} (0.977 and $0.985 \AA$, respectively; Shannon, 1976), the Yb compound is strictly mononuclear (Fig. 1). Each Yb^{111} ion is, like each $\mathrm{Tm}^{\text {III }}$ (and $\mathrm{Er}^{1 I I}$) ion, surrounded by three $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligands; however, the particularly long intermolecular distances, $\left(\mathrm{Yb} \cdots \mathrm{C}^{\prime}\right)_{\min }$ and $\left(\mathrm{Yb} \cdots \mathrm{Yb}^{\prime}\right)_{\min }$ (Table 3), strongly advocate the existence of quasi-free $\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{111}$ molecules in the lattice. The data of Table 3 lend, on the

[^1]

Fig. 1. ORTEP drawing (Johnson, 1976) of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{\text {III }}$. Dashed line: trace of closest-packed zigzag chain in the lattice.
other hand, further support for the assumption of weak 'chemical' interactions between each $\mathrm{Tm}^{\text {II }}$ (or $\mathrm{Er}^{\mathrm{III}}$) ion and one distinct ring C atom of an adjacent $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Ln}$ molecule.

The structural non-equivalence of (solution-) crystallized $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{111}$ and (vacuum-) sublimed $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3^{-}}$ $\mathrm{Tm}^{I I I}$ may be compared with the recently reported (Lamberts, Lueken \& Elsenhans, 1986) dimorphism of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Gd}^{\mathrm{II}}\left(\mu_{2}-\mathrm{Br}\right)\right]_{2}$ which consists either of isolated molecules (sublimation temperature $\sim 403 \mathrm{~K} ; D_{x}=$ $2.289 \mathrm{~g} \mathrm{~cm}^{-3}$) or of infinite chains of μ_{3}-Br-bridged dimers (sublimation temperature $\sim 423 \mathrm{~K} ; D_{x}=$ $2.392 \mathrm{~g} \mathrm{~cm}^{-3}$).

The displacement of the Yb^{111} ion from the plane of the three $\mathrm{C}_{5} \mathrm{H}_{5}$ ring centres $(0.050 \AA$) is notably smaller than the corresponding quantity for $\mathrm{Ln}=\mathrm{Tm}$ or $\mathrm{Er}(\mathrm{ca}$ $0.3 \AA$) and also that in $\left\{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Sil}_{2} \mathrm{~N}\right\}_{3} \mathrm{Yb}^{111}(\mathrm{ca} 0.4 \AA\right.$; Eller, Bradley, Hursthouse \& Meek, 1977). Hence, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb}^{\text {III }}$ belongs to the still-rare group of condensed $\operatorname{Ln} X_{3}$ systems of almost ideal pseudo- $D_{3 h}$ microsymmetry. Expectedly (Fischer \& Li, 1985), the mean $\mathrm{Yb}-\mathrm{C}$ distance of $2.639 \AA$ in the base-free molecule is slightly shorter than the corresponding distance in the pseudotetrahedral molecules $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3^{-}}$

Table 3. Parameters indicative of variable packing of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Ln}^{\mathrm{III}}$ molecules

Ln	$\underset{(\AA)}{\left(\operatorname{Ln} \cdots C^{\prime}\right)_{\min } *}$		$\underset{(\AA)}{\left(\operatorname{Ln} \cdots \operatorname{Ln}^{\prime}\right)_{\min }}{ }^{*}$		$\underset{\left({ }^{\circ}\right)}{\operatorname{Ln} \cdots \operatorname{Ln}^{\prime} \cdots \operatorname{Ln}^{\prime \prime}}$		$\begin{gathered} D_{x} \\ \left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \end{gathered}$
Er	3.137	3.190	5.806	5.934	114.3	114.9	2.038
Tm	3.243	$3 \cdot 334$	$5 \cdot 891$	6.040	114.5	$113 \cdot 8$	2.045
Yb							2.027
Lu	$2 \cdot 519$	(2.654)					$2 \cdot 100$

$\mathrm{Yb}^{\text {III }}\left(\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)_{1 / 2} \quad[2.68(1) \AA$; Baker \& Raymond (1977)] and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Lu}^{\mathrm{II}}$. THF [2.69(4) \AA; Ni et al. (1985)].

References

Baker, E. C. \& Raymond, K. N. (1977). Inorg. Chem. 16, 2710-2714.
Birmingham, J. M. \& Wilkinson, G. (1956). J. Am. Chem. Soc. 78, 42-44.
Eggers, S. H., Hinrichs, W., Kopf, J., Jahn, W. \& Fischer, R. D. (1986). J. Organomet. Chem. 311, 313-323.

Eggers, S. H., Schultze, H., Kopf, J. \& Fischer, R. D. (1986). Angew. Chem. 98, 631-632; Angew. Chem. Int. Ed. Engl. 25, 656-657.
Eller, P. G., Bradley, D. C., Hursthouse, M. B. \& Meek, D. W. (1977). Coord. Chem. Rev. 24, 1-95.

Fischer, R. D. \& Li, X.-F. (1985). J. Less-Common Met. 112, 303-325.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lamberts, W., Lueken, H. \& Elsenhans, U. (1986). Inorg. Chim. Acta, 121, 81-87.
Ni, Ch.-Z., Deng, D.-L. \& Qian, Ch.-T. (1985). Inorg. Chim. Acta, 110, L7-L10.
Shannon, R. D. (1976). Acta Cryst. A32, 75 1-757.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1984). SHELXS84. Program for the automatic solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
Wasserman, H. J., Zozulin, A. J., Moody, D. C., Ryan, R. R. \& Salazar, K. V. (1983). J. Organomet. Chem. 254, 305-311.

Acta Cryst. (1987). C43, 2290-2293

Structure of Thermochromic Crystals of Benzimidazolium Tetrachlorocuprate(II) Hydrate

By M. Bukowska-Strzyzewska and J. Skoweranda
Institute of General Chemistry, Technical University, 36 Żwirki, 90924 Lódź, Poland

(Received 12 February 1987; accepted 22 July 1987)

[^2]
[^0]: * Coordination Behaviour in Base-Free Tris(cyclopentadienyl) Complexes of Rare Earth Elements. V. Part IV: Eggers, Hinrichs, Kopf, Jahn \& Fischer (1986).

[^1]: * Lists of structure factors, anisotropic thermal and H -atom positional parameters, deviations from least-squares planes and distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44265 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: Abstract. $2 \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}^{+} . \mathrm{CuCl}_{4}^{2-} . \mathrm{H}_{2} \mathrm{O}, M_{r}=461 \cdot 7$, monoclinic, $\quad P 2_{1} / c, \quad a=16.040(3), \quad b=4.243$ (1),$\quad c=$ 27.501 (6) $\AA, \beta=104.78(4)^{\circ}, V=1809.7$ (8) \AA^{3}, Z
 $=4, D_{x}=1.690(1) \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA$,
 $\mu=1.85 \mathrm{~mm}^{-1}, F(000)=932, T=293 \mathrm{~K}$, final $R=$
 $0.038, w R=0.042$ for 2806 reflections $[I>3 \sigma(I)$. The
 © 1987 International Union of Crystallography

